AUTHOR TITLE

INSTITUTION
PUB DATE NOTE

PUS TYPE

EDRS PRICE

 DESCRIPTORS
IDENTIFIERS

Sleeman, D.
An Attempt to Understand Students: Understanding of Basic Algebra.
Stenford Univ., Calif. Dept. of Computer Science. 84
36p.; A product of the Heuristic Programming Project. For related documents, see SE 045 844-845.
Reports - Research/Technical (143)
MFO1/PCO2 Plus Postage.
*Algebra; Artificial Intelligence; *Cognitive Processes; Comprehension; *Computer Assisted Instruction; Junior High Schools; Mathematics Education; *Mathematics Instruction; Mathematics Skills; *Models; Problem Solving; *Secondary School Mathematics
*Intelligent CAI Systems; Mathematics Education Research

ABSTRACT

This paper reports the results obtained with a group of 24 14-year-old students when presented with a set of algebra tasks by the Leeds Modelling System (LMS). These same students were given a comparable paper-and-pencil test and detailed interviews some 4 months later. The latter studies uncovered several kinds of student misunderstanding that LMS had not detected. Some students had profound misunderstandings of algebraic notation; others used strategies such as substituting numbers for variables until the equation balenced. Additionally, it appears that the student errors fall into several distinct classes: namely, manipulative, parsing, clerical and "random". LMS and its rule database have been enhanced as the result of this experiment, and so LMS is now able to diagnose the majority cf the errors encountered in this experiment. Finally, the paper gives a process-orientated explanation for student errors, and re-examines related work in cognitive modelling in the light of the types of student errois reported in this experiment. Misgeneralization is a mechanism suggested to explain some of the mal-rules noted in this study. (Author)

[^0]"PERMISSION TO REPRODUCE THIS material has been granted by

D. Sleeman

to the educational resources INFORMATION CENTER (ERIC)."
U.m. DEPANTMENT OF EDUCATION NATIONAL INSTITUTE OF EDUCATION EDUEATIONAL RESOURCES INFORMATION
This CENTER (ERIC)
This document has been reproduced as receivad flom the person of organization originating it.
\square Minor changes have been made to improve reproduction quasity.

- Points of view or opiniona stated in this docu. ment do not necessarily pepresent officiel NIE position of policy.
- ACKNOWLEDGEMENTS: To Mr. M. MCDermot and students of Abhey Grango School. Leess, for providing fascinating suts of protocols. To Pat Langley, Kurt Vanlohn, Stallan ohlsson. Jaime Carbonoll, Jim Greono, k. Lovell anc Alan Bundy for discussions about this work. Kurt Vanlohn, Poier Jackson, Stuart MacMillan, Pat Langley. Stollan Ohisson. William gricken, and an anonymous reforoe made valuable comments on en earlier draft of this paper. To the University of Leeds for granting me snbbatical leave. fo the Sloan foundation for providing me with some financial support. And to CMU and Stanford for providing wonderful environments in which to complate this study.

[^1]
2

- ABSTRACT

This paper reports the results obtatned with a group of 24 24-yearwold students when presented with set of algobratasks by the Laeds Modelling System, LMS. Thesn same students were given a comparable paper-and-pencil test and detailed interviews some 4 manths later. The latter studies uncovered several kinds of student misunderstandings that LMS had not detected. Some'students had profound misunderstandings of algabraic notation: others used strategies isuch as substituting numbers for variables until the equation balanced. Additionally, it appears that the student errors pall into several distinct classes: namely, manipulative, parsing., clericaland "random".

LMS and its ri'o database have been onhanced as the result of this experiment, and so LMS is now abie to diagnosa the majority of the errors encountered in this experiment.

Finally, the paper gives a process-orientated explanation for student errors, and re-examines related wark in cogntetve modeliing in the light of the types of student errors riported in this experiment. Mispeneraitzation is a mechanism suggested to explain some of the mal-rules noted in this study.

The impetus for work. In intelligent cal has two major sources: firstiy, the practical alm of producing teaching systemi which are truly adaplive to the noeds of the student and secondly the "theoretical" interest invoivad in iormulating these activities as algorithms. It has bean argued by. llartioy and sieeman 8973 that an intelligent teaching system requires access to: knowledge af the task domatn: a model of the student's behaviour: a list of possible taching oparations; and means-ands gutdance rules which relate teaching dectstons to conditions in the student model.

During the last decade a number of systems have been implemented which inciude some or all of these databases. In.particular during the last 10 years a number of systems have been implemented which attempt to provide suppoftiva learning environments intended to facilitate learning-byedoing. Thase systems include SOplile (Brown. Burton \& de kieer 1982). GUIDON (Clancey 2982), WEST (Burton \& Brown 8982). Wumpus (Goidstein 2982), and PSM-MMR (Sleaman \& Hendley 1982): such systams liave been called Coaches or problem Solving Monitors. In this paper, we address a packicular aspect of the probiem of inferfing model from the student's behaviour on a sot of tasks. [1]. We shall outifne the results of a recent experiment with 2424 -year-old students who were constdered to be of average ability. The issue to be constdered in this paper is-whether the models Inferred by the Leads Modalling System. LHS, can be given a cognitive intarprotation, and whether it ts possiole to say sonething about the nature of tho pcocessas used by a student given tho model inferred by L.MS.

1.1 The Luods Modelling Systom, LMS.

(ll common with BUGGY (Brown \& Burton, 1970) LMS uses a generativa mechantsm to create models from a sot of primitive components. Withoue a generative factitity, the ablitty of a system to modal complex errerful behaviour is severaly limited. However, the use of such a mechanism also causes difficulties, sincta such an algorithm can readily lead to a combinatoria? explosion. For example, if there are N primitive rules in a domain where

1. For a more detalled discussion of this, and related issues soe the introductory essay to

the rule-order is signtricant, thon there ara N factorial. Nt. models to, be constdered, BUGGY and LMS are simitar in that bugGy uses a collection of primitivo bugs from which to genarate modals, while LMS uses mal-rules. incorrect rules. observad in the analysts ut arlier protocols. On the other hand, whereas bugGy usas heuristics to limit tha stie of its modef space, major feature of the Lits work has buen the formulation of the search to focus each task-set on particular rule(s). [2j. As has been demonstrated (Siecman smith 1981. and more particularly by Steaman ig83a) this techaiquo drasticaliy reduces the number of models to be constdered at each stage. [3]. Jefore constdering the results of this expertment, we oriefly review the production system represeatation which hes bash used for student modeis and explatn the matn features of the prociuction system interpreter used to exacute these models.

Figure da olves a set of Production Rules, used with LMS. which aro sufftctent to solve Itnear aigebraic equations of one variable. stgura ib gives a set of malerulas for this domatn which have been observed in protocols analysed aerifer, a taskeset ts a set of s-7 tasks thich ithohlohs the use of one or more domain-rules; figure 2 givas a typical task for ach of this domain's task-sets and tha rulas which asch set focusses on. Further, figure 2 shows the exact fornat of tasks presonted by LMS: this format has also been used in all subsequont interactions with the students.
[Figuras 1 and 2 about here].

In this work, modol is an ordeced list of pulas. Order is significant, as the Interpreter executes the action of the ficst rule in the model whose conditions are satisfted by the state (l.e.. the task or the partially solved task). In this way we are atie to capture ocecedencie which is important in this subject domain. The match-execute cycie continues until no further rules fire. figure ic shows pairs of correct and "buggy" models executing typicil tasks. LMS infers model for each lask which the student worke. producing sumacy model(s) for each tisk-set. If iho student's beliaviour is randon or conforms to previousiy unencountered mal-rule then LMS returns a null model (soo Sleoman 1982 for more detatis.). LNS presents tasks to a student untit its example bank is

```
2. Examples of task-sets are given in figure 2.
. Initially. wo mado the assumption that tho dumain was hierarchical and so we have referred to the stages as leyels: thus modelling proceods by pirst cunsidering lovel 1. then 2 , otc.
```

```
exhaustad or untti tho student opts to "ratira",
```

The 1980 Experiment
In 1980 an experiment was run with group of $\mathbf{i 5 - y e a r - o l d}$ students and a macy close agreement was achieved between L MS's diagnosis and those made by a roup of investigators who gave the students individual interviews on analogous tasks (Sleaman 1982). In one important respect LMS and the investigators differed. The design of LMS was stich that if the student did not make an error with say xTOLHS when it was introduced, then LMS assumed xTOLHS would be used successfully at all subsoquont levels. This experiment showed that this was not a valid assumption. for example, some students who were able to correctly work tasks of the form:

$$
3 \cdot x=4 \cdot x+0
$$

nad trouble on the following type of task:

$$
12 \cdot x=2 \cdot<4 \cdot x+6>
$$

where they appeared to forget to change the sign of the x-term when the side is changed, and thus we have seen $20 \cdot x=10$ returned as an answer.

It was, in fact, easy to remove this assumption from LMS's code, but unfortunately the modification lad to an explosion in the number of models to be cons: ad, and so a reformulation of the algorithm was carried out (Sleeman jg83a).

As a result of this experiment, we believed that students' behaviour on algebra could be largely explained in terms of manipulative mat-rules, namely mal-rules in which one of the substeps is omitted.
2. AU OYERYIEM Of EABLIER RELEYANI HOBK In COCHLLIVE MODELLIMG

BUGGY (Brown \& Burton 1978) analysed the responses which students gave to multi-column subtraction tasks. The system reported a diagnosis for each student in terms of correct procedures, or procedures which had some of the tr substeps replaced by incorrect variants, called bugs.

Young 8 o'shea 1982 fotint out that although gugGy produces models that behave Punctionaliy as the students. those models are not very convincting as psychological madels. Many of the bugs appar to be very statiar finany are coninected with borrowing from zerof yet this rolationshtp ts not made ciear. More particulariy, Young o oishea show that some of the augGy data can be analysed more simply in terms of certaln competences beting amilhed from the ijeal model.
fepatr theory (Brown \& Vanlehn 2980) is a further attempl to provide a psychological explanition for the same data, Here Brown \& Vanlenn take a correct procedurefor performing subtraction and apply detetion oparator to the procudure. This parturbed procedure is then used to solve tasks. When ti encounters an impasse. such as a gituation where it is bout to violate precondition (o.g. attempting to take number from 0), a repair is appited to the parturbed procedure, and it attempts to continue soiving the task. This process also uses critics to throw out some repairs which are constdered imposstbia at atuen impasse.

More recentiy Vanlehn 1983 a has suggested a variant of repatr theory, which does not delate -teps from prucedures - as ti is argued that the blocking. or inhibition, of the deletion operator was unprinctpled. Secondiy this version ouercomes the difficulty that cartain core procodures cannos be generatad eastly by rule deletion. Instoad. Vanlehn has suggested a sertes of core procedures. which correspond to the vartous stages of itnstruction (c.f., Sleeman \& Smith 2081). From this perspective an impasse occurs when the student encounters a sub-task which he has not learnt, or has forgotzen.

Both variants of repair theory explain what Brown and his coworknrs have called bug migration, namoly tiat with the same tjpe of task, the student may display different bugs both during tho same cest-parted and between different tests. Moreovar. Vanlenn igal has analysed protocols in which it was possibie co generate all the bugs in an observed migration ciass by applying different repairs to a common (paritally learnt) cope procedure. So Vanlehn suggests consistent bugs can bo explained by supposing the student stores the "patch" and mereiy uses ti with the next tark. the explanation for bug migration is that the patch is ngs resained and that, one of the repairs ts selected randomiy.

Abstract

The 8 llinots group (Davts, Jockuseh \& Mckinight 1070) ha raported algebra students overgeneralising from instances, using an "old" oper, . . ado of a more recentiy introduced one [4], and regressing under cognitive load. Mis. 1082 has furthor analysac those students' performances and has suggested a number of high-level schema which explain sertes of observed errors. These include her "extrapolation priacipla" which explains why a student who has seen the legal transformation:

$$
(A \bullet B) \wedge C \Rightarrow A \cap C \bullet B \wedge C
$$

would then write:

$$
(A+B) \wedge C \operatorname{Aas} A \wedge C+B \wedge C
$$

She also discussos the confusion which seems to ariso betweon the notations of arithmetic and algebra. For instance, she argues that as $3 / 4$ is to be interpreted as $3+3 / 4$ it is not unreasonable that the student should interpret the algebrate expression, $3 \times$ as $3+h$. [5], [6].
4. Hintead of * © instead of Exponential.

5. Although ehts explanation woyld oxplain some of nur obsorvations, students $A B 17$ and $A B 18$ in the teeds study gave an alternative and more comprehensive explanation for their actions, see Section 5.1.2a.
6. Similarly, our eitiar work pion

- result of our 1090 exp an additional data noint for the 1981 axperimert. As al ous our 198 experiment, see Section 1.1. we believed that studints behaviour on mai-rule incorrect stap, see Sectio., 5 correct rule and has one substep raplaced by an inanpropriate or incurrect stap, see Sectio.. 5.1.1 for further discussion.)

BEST COPY

3. THE 1981 EXPERBMEHT WITII LMS

The 1981 experiment was carried out with the cevisad modeller. LMS-11. [7], but with the same data-base of rules and tasks as used in tho 2980 oxpertment. this group of 24 students, average age 'years 3 months, were judged to be of average ability at mathematics: howevor the results were dcamabically different from the earifer group's. [8]. Indeod many of their difficulties wera llot tiagnosed by LMS-it and had to be analysad by tho investigator. This analysis was made very difficult because it had bean assumed that students mould at most make one or: . . 0 minor manipulative errors. e.g.. changing side and not sign, and so LMS had been designed to allow the student to input his or her final answer. snd as many intermediary steps as he ihose. in figure 3 wn give sample summartes produced by LMS-li for students' online intoraction, together with the mal-rules which the tovostiogtor, suggested were appropriate for each task-set. In figura 4. We summartie the complate set of naw mal-rulas which the investigator considerad explained the atudents ${ }^{\circ}$ behaviour with LMS-il.

Note that by stating that a prozocol can be explained by mal-rule. say, of the form

$$
M \bullet X>M+X
$$

(Figure 3a), we do nof wish to imply that given a problem of the zype

$$
3 \bullet x+4 \cdot x=5
$$

that the student would produce the response:

$$
3+x+4+x=5
$$

indeed, we have seen several students write

$$
x+x=5-3=4
$$

and when asked to provide intermediary steps they have said categorically that there were none as the above was done in "one step". Neverthaless we are happy to accept that both furms are oxflatned by the mal-rule: the first form however requires that several additional rules are executed in order to get it into the sta o given by the "second"
\qquad
7. Revised to canaxa the assumption that if an error is not made with a rule at the stage it is first introduced, that the student will usa the rule corroctly on all subsequent occasions, see
Section 1.1 .
8. Most of these students had been introciuced to aigebra several yc.rs earifer in their midde schools: further. the high schuol had retaught algebra - virtually from the beginnting - in the yeir nefore the eaperiment took place.
studen:. (it should be noted that the mal-rules given in figures 3 a and 30 are more comprahensive and carry out several housekeeping steps. The differences between basic and comprehensive mal-rules are significant when ono tries 20 perform ramodial instruction. as it is important to ensure that the grain of the instruction.matches the student's.)
[Figures 3 and 4 about here]
As a result of analysing these summartes, a number of questions were ratsed:
-What is the crucial difference between the task-sets which a paritcular student is and is not able to correctly solve?

- Does the atudent's.perception of algubratc tasks vary from one task-type to anothery.

Unfortunately, as the school vacation intervened. it was not possible to meet with the students agatn until september (1981). Because of the time that had elapsed, the students were given a paper-and-pencil test which covered comparable tasks to those used by LMS. Phese tests were analysed in detall by the investigator, and as result of this certain students were given detalled diagnostic interviews. The next sections give more dutatls of inese steges.
3.1 Ine September Rager-and-Pencil Iost

From a comparative revtew of the May and Soptember data, see sleeman 19836 for the detalls, we concluded:

1. The performance was generally considerably better in September than in May. (Hoto no additional teaching in Algobra had beon given, however the students had presumabiy done same self-study in preparation for their June exallinations.)
2. A constderable number of tasks were not solved on the writien test (whereas LMS finsisted the student gave a 1 sponse to each guestion).
3. Some students who appeared to have "wlid" ruies on particular tasks in May, seemed to solve this type of task correctiy in September, e.g., AB5.
4. Some students whos, behaviour had been "randoin", or "wild" in may had now setbled le use malorules consistently, e.g., student AB18.
5. One student, $1 A B 7$, gave multiple values in an oquation where x occurred more than once.
6. Many of the students made the common precedence orror. namely given a task of the form:

$$
2+3 \cdot x=18 \text { they returu } 6 \cdot x=11 .
$$

- As result of this comparison it was dectded to intarviem all those who appeared on the written test still to hava major difficuitias. but not to interview those who had anly common "procedenca" errors, or those who had had major difficulties witch appeared. lo have cieared up".

3.2 Ihe Interyiams

The interviews proved to be remarkably revealing as the students without exception were extremely articulate. These dialogues were recorded; figures $6 \& 6$ have been refonstructed from the tapes and the worksheets.

The tnvestigator presented the student with a sertes of tasks and asked him, or her. Lo work each one explaining as he wellt alorig exactiy what he was dolng. in some cases the investigator asked the student to tell him which of two alternative rorms ware correct and fraquently asked the student to explatn why. The tasks prasented were diferent for each student, and were based on the difficulties noted in the individualis september test. The interviewer thus started each session with a list of task-types to be oxplored, but often generated farticular tasks as a result of answars given to the planned tasks.

The following is a sumary of the main fatures noted during the interviews:

1. Some students "searched" ror solutions (1.0.. iried differens values for X). (Section 3.2.1).

11

2. One student computed a separate value for each x givon in the equation. (Section 3.2.2).
3. One atudent matntained that there ware a number of quite distifct ways of solving an equation: even whell it is demonstrated that each approach led to difforent answera. (Sectinn 3.2.3).
4. Some studants have "hard", consistent, mal-rules. (Sect on 3.2.4).
5. Some students have the correct rules and can explatin why it is not permissiule to perform the tllegal transformation, facluding the fllagal transformations that the student appeared to use in May. (Secetion 3.2.5).

Each of these points is discussed in the following sub-sections.

3.2 .1 Saacching foc Solutions

Searching for solution appears to be a cacy common way of solving equations with students beginning algebra, and presumably arises because the initial equations presented could ve solved in this way. When given an equation of the form:

$$
3 \cdot x+2=14
$$

such students substitute $X=1$, then $x=2$, then $x=3 \ldots$ untit the equation balances. (See Sleeman 1003c for further details of student ABal's protocol). [9].

Further. student ABil solved tasks of the form:

$$
3 \cdot x=2
$$

as $x=-2$, explaining she subtracted 3 from both sides.

It is indeed ineriguing to watch students changing their approach when solving tasks op this latter form depending on whether the task is solvable by "search". Students do nat appear
9. Inde日d. in amore recent test with 100 13-year-olds, it appears that about 95x of them use this approach. Intelligent rutoring Systems and teach.rs should suspect inat a student is using a naive algorithm if he appears to be unable to solve tasks where the variable is a negative integer, large-integer or non-tnteger. The teacher should be concerned because the naive alporithr is only applitable to a sub-set of algebraic equations, and hence should be degned a sighificant weaxness, and one to be remedied. It seems clear that the use of simplistic tasks leads to a natve algorithm which causus major conceptual difficulties on more auvanced tasks.
to believe that all equations of the same form should bo solved in the same way. (Clearly this point should have buen discussed in an interview with those students.) Such students are often unable to solve correctiy equations which contain multiple xs: they attempt to euess values for all the x : in the equation, see the next subsection.

3.2 .2 Kalala Vas x

In this subsection, we report a student who has a very strange, but neverthetess very sonsislans algarithm. for solving tasks invoiving 2 xs. When student aby was originally working at the terminal, sho was heard to muter:
"If this x was 2 , thein it would work if this second x was 4".

Not only was this student consistent in both the paper-and-pencil exerciso and in the interviow, she was able to explain what she was dotig. Given the task:

$$
2 \cdot x+2 \cdot x=12
$$

She gave :he following explanation:
"What d is take the 3 and I make the firsi. lat to 2 , so 1 write:
3•2"
When asked by the interviewer why the "first" X is equal to 2, she oxplains that it's the next number alung, and then addod "t think this is the wrong thing to do, but that's what I do".

She then continued "... and then 1 write down the +2 making
3-2+2
I then. work this out. this is equal to 8 and so the second x is

$$
12=8 \text {, that is } 4^{n} .
$$

She then completed the solution and gave the 2 valdes for X, and so the final state of her woiksheot was:

$$
\begin{aligned}
3 \cdot 2+2+4 & =12 \\
x & =2 \\
x & =4
\end{aligned}
$$

13

She used this algorithm consistentiy on 9 tasks. see sleaman 2783c, [10].

3.2.3 Altacnative Aloocitoms

Although student abll was able to solve several task-typos correctiy, he was easily "distracted" and quite unable to toll the invostigator why the investigator's "alternatives" wera lllegal. On sorne tasks the student suggested seyncal illegal solutions, and again was really unable to distinguish belwaen them. (See figure 5 for details). On the other, hand, this student did give as an aside a rationale for his "method", namely "collecting all the $x s$ to the LHS and all the numbers to the RHS", which will be discussed in Section 6.1.2a.
[Figure 6 about here]

3.2 .4 "Hard"/Consistent Mal-Rules

Many of the students used consistent mal-rules. Just over half of the 24 etudents we saw mis-handled precedence in equations of the form:

$$
2+3 \bullet x=0
$$

Part of a protocol for one such student is given in figury 6.1, [12]. Figure bili is part of the protocol produced by the student discussed in Section 3.2.3, where he conststentiy applies
10. Initially, we had supposed this to be a very idfosyncratic algorithm, but subsequently noted that a variant was used extensively by 23 -year-olds. For example we have seen:
"solvol" as:
Similarly.
$3^{\circ} 1+400=3$, making $x=1$ ind $x=0$.
$3 \cdot x+4$ - $x=98$
has been "solved" as:
3*22 $+4 * 8-60+32=98$.
seen
"solved" es:
$3 \cdot x+4 \cdot x=100$
$3^{\circ} 30+9^{\circ 2}=100$
and when asked the student explained that "this one did not work out exactly".
Note that these students frequently solve tasks of the form:
by "search".
12. Recently we have discovered that $90 x$ of a sample of 13 -year-oids had precedence difficultios with acifnmelic expressions involving" " and "o" operators.

Abstract

a further intriguing transformation to complote sot of tasks. In order to understand this protocol fully we have suggested that ademalization step takes place batween stages 1 and 2 of say protocol a). That is, we suggest that when the student applies the mal-rule to the original task. this rasults in an "unusual" form which the student then "normalizes" uafore continuing to process the rest of the task! (See Sleeman 1083 for a lengthier discusston of "normalization").

[Figure 6 about here]

Student AB18, Figure 6.18I. is remarkably consistent with his mal-rules over a whole range of task-types. Note the application of his algorithm to task c) which involves 3 x-terms. (To give him justica, he realises that he had got tasks d) - g) wrong as he noticed that the equations did not balance whan he substituted his answars back inf. Further, having worked lask h). he noticed that when he moved the across to the right hand side, he changed the sign. So he suggested that when he moved the X (assoctated with $2 \cdot x$) to the LHS, he should also change its sign. He satd:
" X - X is 0 , and so the LHS became 0 and the RHS did aot"
and so realized that this proposed solution was tmpossiblu. However. for good measure he also workud task i) with the "revised" algorithm.

In the course of our discussion. this student also gave the basis for his "algorithm" which is discussed in more detail in Section 5.1.2a,

3.2 .5 "Saved Sumls"

In Septemijer student $A B 5$ worked correctiy tasks which she had got considitantly wrong in May, namely task-sets 7 and 8. For task-set 8 she appeared io use vidi-rule:

$$
M \bullet X=N \cdot X+P=X+X=M+N+P \text {. }
$$

Morgover, when presented with a fallactous alternative during the September interview, she was able to spot it and to say why it was wrong. For example, "not able to add a number to an x term". "not abie to separate a number from an x term". etc. (sea sieeman i9b3c for moro details). In May, this student showed a lack of understanding of basic algebraic notation which appeared to be remedied by September. To 5 ee whether this was the case the investigator also presented tasks from sots 12 and 13 of figure 2. i.e.. tasks of the form:

BEST COPY

```
M+N\bulletX+P\bulletX\bullet: and M\bulletX!N+P*<0\bulletX+R,
```

All of which she morked correctly and was able to verbalise the stages she went through. An equation which contained an "unusual" vartable. AA, was also presented and again this was warked correctiy, Similarly several other students showed substantial "progress". and again this was associated with the ablitity to expladn what they ware doing.

4. SUBSEQUENT UPGRADE of LMS and its dapabase

The set of rules and mal-rules used in the 1081 experiment has subsequently been enfanced $t 0$ include the additional manipulative- and parsing mal-rules confirmed by the student interviaws. [12]. Additionality. the code of LMS has been extsnded to deal with mal-rules which have somewhat different character from manipulative rules. The oxtended LMS with the enhanced database is able to diagnose the majortty of the errors encountered both in the on-line sessions carfied out in May 1981 (see figure 3) and in the interviews (see figures 586) Sleoman 1983c.
5. COGNITIVE MODELLING and an INTEAPRETATION of the resulis of the 1981 EXPERIMEMt.

There is a stoadily growing body of data about how school and college sfudents solve algebra tasks, Paige \& Siman 2980. Lewts 1980. Davis, Jockusch \& McKnight 1978. Kuechemann 1981. Sleeman 1982 and Sleeman 1983c. The major thrust of this paper ts the analysis of the experimental results reported here in terms of related work in cogntive modeliting section 2 gives a summary of this eariler work.

Lacinont Qbseryazions from this Exporimant

1. Students appear to rogress under cogntive load, sae Sleeman 1983 b for detalls.
2. Some of the mal-rules noted in figure a were not seen in the interviews. I now belteve these were an artifact of the first version of LhS which forced ine student to give a response to each question. LMS has now been modifted so that the student can give up on any task.
3. There appears to be a number of ctearly identifiable tyose of errors. (Section 6.2).
4. Students use number of alternative "methods" to solve tasks' of the same set. (Section 8.2).

1

5.1 Chassification of absocyed sfudeut acrocs

Wo propose a ciassification of students: orrors observed in this experiment, namely, manipulative, parsing, clerical and "random". Rcacifically. this classification is of consiuerabie importance as it enables one to give apocopetate remodial tastruction for the senveral typas of error. In case of "mantpulative" mal-rules it mould appear that the atudent bastcally "knows" the rule. but due so cogntitve overload or inattention, is emitting substep(s). The jparsing errors appear to arise from a profound misunderstanding of algebraic notation, and $s 0$ have to te romediated very differently. Additionaliy. in this section we suggest megiantsms for several of these error-iypes.

2.2.1 Mandoulative Etrocs

We define a mantpulative mal-rule to bn variant on correct rule which has one sub-stage elither omitted or replaced by an inappropriate or incorrect operation, e.f., Young a O'Shea 1981. For example, mntoahs is a mal-rule which caplures the movement of a number to the other side of an equation where the student oinits to ahange the sign of the number. We suggest that all the mal-rules reported in figure 10 and inoso numbered $\mathbf{7 - 9}$ in figure 4 fall within this category. Also in Sub-section 5.2.2b we briefly discuss the (apparentiy) related phenomena of confusion of operands.
A) A schema lor genecatiog manioulative mal-culos

In figure 1 we report 3 new (manipulative) mal-rules, variants of SOLVE, SIMPLIFy and arab respectively, [13]. which can be eaplained by a deletion mechantsm, as can ehe "original" mal-rules given in figure ib. Noto that inis schams would also generate many mat-rules which wo have not yet observed, In the next paragraph we suggest why some of the possible mal-rules are not observed.

A yacjanc ga SOLVE. The student realizes he has a task in which the SOLVE rula should be activated and forgets to apply one .uf the operations, namoly dividing by M. SOLVE has ithron principal sctions: notiag down N. the divide symbol and M, and so this mal-rule could be sald to be oafitting some of the orincipal steps. it appears that students hava an idea about the acceptable FORM of answers and so given:

$$
M \cdot X=N_{0} \text { they do NOT produce } X=/ M \text { or } X \cdot N /
$$

A xariant an SPMPLLEY. Examples of the two rules oiven here. which have occurred ressonably frequently are:

$$
\begin{array}{lll}
x=6 / 4 & \Rightarrow & x=3 / 4 \\
x=6 / 4 & \Rightarrow & x=6 / 2
\end{array}
$$

Abstract

Agatn we argue that the above observations can bo explatned tf we assume that this rule has sevaral princ!oal steps including calculate the common factor. divide the "top" by the common factor, anc ifivide the "bottom" by the common factor. fach of these mal-rules corresponds to one of the latter steps betng omitied.

A kalijant ga bhaz. We hove seen the task:
$6 \cdot x=4 \cdot\langle 2 \cdot x+3>\quad$ - $0 \quad x=4 \cdot x+12$
bRAZ is a more complex rule with several steps and so one might expect to find a
13. The variant on SOLVE roported in figure 4 is:
$M \cdot X \cdot N \Rightarrow X=N$
Two variants on SIMPLIFY reported in figure 4 are:
$M \bullet X=N \rightarrow X=(N / F) / M$
$M \bullet X \bullet N \Leftrightarrow X \in M /(M / F)$
where F is a factor of M and N.
The variant on BRAZ reported in figure 4 is:
$H^{\circ}<N \cdot X+P>-M \cdot X+M \bullet P$

Abstract

correspandingly larger number of mal-cules. Itis is indeed irue. This "new" mal-rule also conforas to the pattern noted above, as ti can also be explained by the omission of one subuaction.

12. Confusion of apacands.

We have noted errors of the following form:

$$
5 \cdot x=12 \cos x 2 / 12
$$

whure clearly one operand is confused for another. Norman 1901 explains such sifas by saying that thay are a consequance of a notsy processor.
c) "Gcain slze" and mandoulafiva mal-rulas.

There is a very real senso in which detallad analyses cf manipulative mal-rules allows one to infer the substeps processed by students, and this in turn allows one to predict the set of mal-rules that will be encountered in domain. (Bearing in mind the tdea of acceptable form outified above). Further. one might argue that the representation of the tasks should be at this "lower" level: the justification for the representation chosen (see figures iadb) is that this appears to be more consistent with the collected vertal and writen protocols for students solving thase tasks.

The schuma discussod above for generating manipulative mal-rules by omitting, or modifying, one substep is thus consistent with Young and O'Shea's modelifing of subtraction. further, we belfove thá confuston of operands can be seen as ariant of this same mechanism.

i. 12 Incorceal Raocosanhation of the Iask or Ralsa Ecrors.

 We have categorized the first 6 sets of Mal-Hules in figuro 4 as ones which summarize what happens when astudent "mis-sees", or mis-parsas, an algebraic equation. We assert that many of the studonts whom we interviowed carriod out steys of the computations in ways which would not fall withtn the definition given earlier for manipulative mal-rules. ralow, we give typical prutocols for two students working the task $0 \cdot x=30 x+12:$$$
\begin{array}{ll}
6 \bullet x=3 \bullet x+12 & 6 \bullet x=3 \bullet x+12 \\
9 \bullet x=12 & x+x=12+3-6 \\
x=12 / 9 & 2 * x=9 \\
x=4 / 3 & x=0 \cdot 2
\end{array}
$$

When we pressed the "first" student for all explanation of how the ortginal equation was transformed thto the second. t.e.. $g * x=12$, the student taiked about moving the $30 x$ term across to the faft hand side. Thus the faterviewer congluded the studens was using a varians, of the correct rule, namely i manipulative mal-rule. When the "second" student was pressed he simply asserted that the change from the original equation to the second form "was all done in one step". Hence the intorviewer concluded it was a very different typa of mal-rule involved and gos a simple vartant on the correct rule. Thus tho interviews provided assential additional informetion ss, of course. the second student's protocol could be explained by the use of MXTOLHS and the malarule:

$$
M \bullet X \Rightarrow M+X
$$

which some peeple might wish to argue constitutes a manipulative mal-rule (replacing the e opeiator by the operator). This investigator maintains that such a transformation roveals a profound misunderstanding of algebratc notation and 50 should be constdered as a dacing mal-rule.

Additional "evidsnce" for the distinctiun between manipulative and parsing mal-rules comes from an understanding of the likely reprasentation of the equation for the two groups of students. Figure 7a givas a correct parse tree for the equation discussed above. Highly probable inadequate representations for the equation. which are consistent with observed mal-pules, are the linear algebraic string, l.e. the usual writien form of an algebralc equation, and the not-so-deeply nested tree given in figure 7b. These latier. representations suggest that the student has fatied to approctate the semantics of algebratc expresstons e and sees the solution of algebratc equations as a symbol mantpulating task. We collected considerable evidence to support this viem earifer. Sieeman 1982. and in the 1888 experiment (ses figure 6.IIa). where a student transformed:

$$
2 \cdot x+4 \bullet x=82 \operatorname{lnt} 0 \cdot x \bullet x=12-2-4
$$

a) Schems for. Egenerablug" Raising mal-rules.

In the course of the interview student $A B i \theta$ explatned that he was carrying out the teachergiven algorithm of: "Collecting all the x s on the left hand side and collecting all the numbers on the right hand siden, and added that he was not really suro what to do about the "extri muitiply signs". Student ABit gave a similar explanation for his actions. fhis gives us a schema for generating mal-rulas. In this section we explore this topic further.

For oxample given the tesk-type:

$$
H \bullet X+N \bullet X=P
$$

This scheme gives the following "action sides" for mal-ruies:

$$
\begin{aligned}
& X+X=P=M=N \\
& X+X=P+M+N
\end{aligned}
$$

where in the second case the x coeffictonts are treatod "spectally". 1.e. . the coeffictente of the x s wert taken across to the RHS of the equation but tho signs were Nor changed. Additionsily, there is the porm givan by student A8s7, and quoted in figure 0.81, namely:

$$
\bullet x \bullet x=P=M-N
$$

which he went on to "normalize" (see Section 3.2.4) to:

$$
X \cdot X=P=M=N
$$

and its "complementary" form:

$$
X \bullet X=P+M+N
$$

Similarly, given the task-type:

```
M\bulletX\bulletN\bulletX+P
```

this schema creates the following forms:

$$
\begin{array}{r}
X=M+P \cdot M \\
X=H+P \bullet M \\
X+X=M+P-M \\
X+X=H+P \cdot M \\
X-X=M+P \cdot M \\
X=X=N+P+M
\end{array}
$$

For example on task h). student AB1B suggested the use of doth the third and the fifin forms (see figure 0.111).

As argued above. unlike the manipulative mal-rules, the oarsing mal-rules cannol be explailiad by omititing a component. Neither dees it seam that ehey can be oxplain. $\begin{gathered}\text { by }\end{gathered}$ forforming a repatr to a core procedura. unless one is prepared to broaden one's viow of a repair to include the schema which were observad with students ABit and ABsa, and the "extrapolation" procedure noted by Ma:z. [14].
4. Further, l suggest both these schema mechanism discussed in Section 5.2 .

5.2.a clacical ocracs.

Ansiysing some of the protocols, one is happy with the explanation that some "sifips" occur. for example:

$$
\begin{aligned}
& 10 \bullet X-26 \quad \Rightarrow \quad X=25 / 18 \\
& 2 \bullet X \cdot 6 * 5
\end{aligned} \quad x \quad X \quad 18
$$

In the first case the student has probabiy seen the " 0 " as an " 8 ". In the second he has probably made an arthmetic error. [15]. DE日UGGY (Burton 19a2) considers an answar tan a "number-bond sitp" if the answar is within 2 of the cor. oct one. the second silp given above could be explatned if we had an analogous aigorienm for the evaluation of multiplicatide expressions. However, the first sitp, a "uitual" one, clearly could not te. So we suspect that to account for the variaty of "slips" encountured in this domain a more sophisticated approach. c.f.. that advocated by Horman 8981 would be necessary. However, we have not thought this worth investigating as clerical orrors have so far been relatively infrequent.

Many of the mistakis not explatned so par may be due to the consistent use of mal-rules which so far we have not identified, [20].

$5{ }^{2}$ Using Altecnative Hehhods of Bug Bigration

Repair theory gives a neat explanation for the observed phenomera of bug migration in the domain of mifiti-column arithmetic. Brown 8 Vanlohn 1980, namely that the student will use e rolated family of mal-rules, and possibiy the corroci rule, during a single session with a particular task-sat.
15. Given the earliter definition of mantnulative mal-rules, it aneacs
paported governars that the errors reported above have a different nature. At the very ieast if they are instances of manipulative mal-rules. they are not alochcaic mantpulative mal-rules.
16. As this is clearly a very domanding task. thore is a noed to tmplement some computational dovico to assist the investigator. A preliminary systen has been implemented which has alroady given sevoral "explanations" not spoted ty the livestigater.

There seems to be an aiternative oxplanation which should also be considered. Although a task-sut may have beell designed to highitght one particular feature, the student may spol completely different feature(s) and these may dominate his solution, [17]. Repatr theory accounts for some bugs by hypothosizing that the student had not encountered the appropriate teaching necessary to perform the task. Suppose we make the converse assumption, that the approprisie teaching had been carried out, and further suppose that some students gain competenco in this domain not by boing told tho rules but rather by inferriag rulas for themselves, by noting the transformations which are applied to tasks by the teacher and in texts. [18]. [19]. It seems reasonable that the student's inforence procedure should be gulded by his provious knowledge of the domain. in this case the numider system, and that the student normally infers several rulos which are conststent with the example. and not just the correct rule. Indead due to some missing knowledge the correct rule may not be inferred. (And so the fact that the student aeyer u.'s the correct method along with several buggy methods is not evidence that he has not encuunterad the material before.) We shall refer to this process as Knowladge Directed Inference of rules, or mis-goneralization for short.

Suppose. the student saw the following stages in an algabraic simplification:

$$
3 \cdot x=6 \quad \text { mn> } \quad x=0 / 3
$$

Then he might infer

$$
X \text { = RHS number/LHS number OR } X \text { = LARGER number/SMALLER number }
$$

Further, wa sugest that schema such as that articulated by students ABj7 and ABss could have been inferred by the process of mis-generallation.
17. Earlitur Sleeman and Biown 1982 have algued: "...... Porhaps more immediately, it suggests that a coach must pay attention to the sequence of worked examples, and encountered task states, from which the student is apt to abstract (invent) functional invariances. This suggest: that no matter how carefully an instructional designer plans a soquence of oxamples. he can :over know all the intermediatesteps nad abstracted structures that a student wili genarate while solving an oxercise. indeed. the student may well produce tliegal stops in his solution and from these invent tllegal (algebraic) "principles". Implementing a system with this luvel of sophistication still presents a major challenge to the itsicogntive Science
18. Note 1 am nef claiming that there is a single mechanism. Matz has provided another mechanist namely, that some students use an "extrapolation principle" to extund a method they know woks in one context to further analogous contexts.
19. Infenuntently, VanLehn 19830 has cuma to a similar conclusion. the Sierra system described in tis thesis relitos heavily on inforence.

We will surmise how a student would uso such a rule-set or schema. We will suppose that the abler students activaly experiment with different "mathods", and use their own earlier examples, examples worked by the teachor or in the text to provide discriminatory feedback. From our expertment with 14 -year-old students we have diruct avidence that soma students, e.g., students $A B 17$ and $A B 1 B$, are aware of having a range of applicable rules and being unsure of when to select particular method. That study did not provide any insights into the rule-selection processes used by these students. We could suggest the common default, i.e., that the process is random. However, studes in cognitive modeliting have already discredited this explanation many times, so we will. postulate that the process is deterministic but currently "undetermined". It is further suggosted that tasks which show a rule is inadequate will waken beltef in the rule, but once a (mal)-rule is created it may not be completely eliminated, particularly if tho "counterexamples" are not presented to the student for some period. Thus given this viaw point, the phenomena of bug-migration occurs because the student has inferred a while range of rules and selects a rule using a "black-box" process, Given a Purther task, he again chooses a method and hence selects thu, grine or an alternative algorithan. influenced partly by the relative strengths of the rules. That is, tf the relative weights are comparable it is more likely that ihe student will select a different method for each task. If one weight doatinates then it is likely that the corresponding mothod will be selected frequentily. Further, if only one (mal) rule is generated by the induction process then this approach predicts that the student will consistently use that rute,

We suggest that many of the ougs encountered in the subtraction domain can becounted for by this (inference) mechanism. For instance the Smaller-from-Larger bug where the smaller number is subtracted from the larger indepandant of whether the larger number is on top or the bublom row seans one such example, Brown Burtor 1978 and Young \& 0 Shea 1081 . Brown \& Vantehn 1980 report that because borrowing was introducod, with one greip of students, using only 2 -column tasks these studants inforred that whenever boriowing was involved they should bot row from the left-most column. their "Always-Borrow-Left" bug. (So it appears important to ensure that the oxample set includes some examples to counter previousiy experienced mal-rules. Indued it seems as if task-sets can be damaging if they are too preprocessed and contain too litste "intellectual ruffage": Michener 9978 makes a similar argument.) Additionally, Ginsburg 1971. quotes several instances of young chitiden inferring the name "three-ty" por 30 , given the names for " 40 ". " 50 ", " 60 " and " 3 ". So given the wealth of experimental evidence :his
alturilativa explanation sliould be givan serfous collsideration.
further, I have two philosophical reservations about repair theors. firstiy, by some mechantsm not articulated all studants acquire a common sot of impassos, and moreover thoy consistentiy observe thesc. Sacondiy and mure significantly, rapatr theory, which sets out to explain major individual difforences at the task level, itself proposes a specific mochanism somman tu all students, [20]. On the nthor hand, mis-goneralination predicts that the individual's intial knowledge profoundiy influences the knowledge which is subsequontiy inforrad, and captures the sense in which learners are active theory butiders trying to find patterns, making sense out of observations, forming hypotheses, and testing them out.

3.3 Conclusions

Firsty, we have two explanations for some of the misunderstandings noted with aigebratc notation. Namely, that given by Matz 1982 and that given by siudents, ABit and AB18, see Soction 6.1.2. Certatniy, Matz's expianetion explains some of our observations, but not all as in some cases the coefficients are treated "spectaliy", and thetr sign is a0f changed when they are moved to the RHS. for example, we have observed:

$$
3 \cdot x+4=12 \Rightarrow x=12+3 \cdot 4
$$

1.e. . the student changes the sign of the 4 but nof the 3.

Secondy. there are two hypotheses which explain bug-migration: the one given by repair theory and the one put forward here, namely nis-generalization. Of course it is possible that each may be applicable in different situations,
rhirdy, several "algorithms" have becn presented for creating student models. 1 belfeve these are suggestive about the students' organtzation of this knowledge and about the processes used when students solvo (these) tasks. Repair theory suggests patches are made to incomplete core-procedures. Young and 0 'Shea suggust that it 15 adequate to take a correct procedure and merely delate substeps. The data for the algebra manipulative mal-rules can be adequately explained by either. However, Young and O'Shoa's approach seems inadequate explain the
20. Indeed, am concerned that inany theories of (child) development do nob accept the possibility of there being significant individual differences in dovelopmont, but morely in the individual's cate of progress and the level of his final maturation.
parsing mal-rules. Indeed, we have to extend the ravised repair theory before tho rosults reported here can be accommodated. (An analogous extension is needed to acconinodate the Davis/matz results). This paper claime that there are two very difforent types of malrules at large with algebra students - namely manipulative and pareing mal-rules. The extstence of this second category of algetra errors, and many of the mal-rulas collected in other areas, appear to by best explatned by. Purther mechanism, namely misgenoralization, [21].
fourthiy, there is evidence that once inferiad. rules are additionally apolied incorrectly, I suggest that the mechanism(s) deseribed by repatr theory, Young \& o'shea, and Soctior 5.2 .2 are approprtate for the apolication stage, whereas misgeneraliation is a more plausible mechanism to explain rule acquisition.
21. The abore comparisons of explanations (or thoortes) are important in that they remind us of the essentially pragmatic naturo of Cognitiva Sciance.

6. REFEREIUCES

J.S. Brown a.R. Bu-ton (1978). Diagnostic Models for procedural bugs in basic Mathematical Skills. in Cagnibive Scigace. 2.2. ppisb-182.
J.S. Brown of K. Vantulin (1980). Repair Theory: A ganerative theory of bugs in procedural skills. Copaitiva scinace. 4. pp 379-426.
J.S. Bromn, R.R. Burton, \& de Kleer (1082). Podagogical. Natural Language and Knowledge Engineering Yachniques in SOPHIE i, if and 1il. in insaljigen. Iusoring syslems, edited by D. Sleaman \& J.S. Brown. Nem York: Academic Press. $\rho 0$ 227-ã82.
A. Bundy (1982). Porsonal communtcation.
R.R. Burton s J.S. Drown (1981). An investigation of computer coaching for informal learning activities, In latelligent Iuteciag systoms, odited by D. Siceman \& J.S. Brown. New York: Academic Press, pp 79-98.
A. A. Burton (1982). Diagnosing bugs in a simpla procedural skill. In latelidgent Iukering Systams, ad. D.Sieeman and J.S. Erown. Naw York: Acadamic Press, po 157-183.
W.J. Crancey (1982). Tutoring rules for guiding a case method dalogue. In dntoliligens Iutortag Systems, ditod by D. Sloeman \& J.S. Brown. New York: Academic Press. PD 201-226.
A.B. Davis, E. Jockusch \& C. McKnight (1978). Cognitive Processes in Learning Algebra. Lournal of Childion's Hathemabical Buhavjour. 2. ppi-320.
H.P. Ginsburg (1977). Chilacen's Arithmetici the Leacning Process. Now York: Van Nostrand.
1.P. Goldstetn (1982). The genetic oraph: a represestation for the evolution of procedural knowiedge. In Infelligeans Iutoring Syshems, edted by 0. Sleeman \& J.S. Brown. New York: Academic Press. pp 61-77.
S.R. Hartley \& D.H. Sleeman (1973). Towards intelligent Teaching Systems, Lnt. L Man-Maching Studies. K, pp2i5-2:6.
D. Kuachemann (1901). Algobra in Children's Understanding of Mathematics: 11-16, edited by K.M. Hart, London: John Murray, pp102-119.
C. Lewis (1980). Kinds of Knowledge in Algebra, Paper presented to the aERA AmRal Conference, 1980.
M. Matz (1982) Towards a procoss model for high school algobra errors. In Lotsllident futering Systems, edited by D. Sleeman and J.S. Brown. Academic fress. Dp 25-50.
E.A. Michenar (1978). Understanding Understanding Mathematics. Cognibive Sajanco. 2. pp 301-383.
O.A. Norman (1981). Categorization of Action slips. Rsychological. Bevian 9a. ppi-15.
J. 4 . Paige \& H.A. Sinon (1060) Cognitive Processes in Solving Algetra Word Problems, in Eroblem Solvingi lesearch, Hafhod and Ihaory, edited by B. Kleinmuntz. Published by Wiley.
D.H. Sleaman \& M.J. Smith (1901). Hodelling pupil's Problem Solving. Aclificial Intelligence, pp 171-187.
D. Slesman (1982) Assessing compotence in basic Algebra. in Infslligent Iuloring Syshems, adited by D. Sloeman and J.S. Brown. Acadamic press, pp
D. Sleaman J.S. Brown (1982) Editorial in Intelligent Iutoring Systems. edited by D. Sleaman and J.S. Brown. Academic Fross, pp 1-12.
D.H. Sleeman, \& R.J. Hendley (1982). ACE: A system which Analyses Complex Explanations, In Intelligent Iytoring systems, edited by 0 . Sleaman a J.S. Brown. How York: Acadumic Pross. pp 99-818.
O.H. Sleeman (1983a). A Rule Directed Modelling system. In Machine leacning. R. Michalski, J. Carbonell, and T. M. Mitchell. (editors) Pioga Press, pp 483-810.
D.H. Sleeman (1983b). An attempt to understarid pupil's understanding of basic algibra. HPR mocking gaper. A3-21.
O.H. Sleeman (8083c). Basic Algebra revisited: a study with 14-year-oldg, Stanford Unjeacsity memo HRE 83-9, and to be publistod in loth joucnal of Man-machine studios.
K. Vanlehn (1981). Bugs are not enough: empirical studies of bugs. impasses and repatrs in procodural skilis. Xecos RABC. Cognieiva and Lostcuclional Sciences Iach. eeport. cls-11.
K. Vanlehn (1983a). On the Representation of Procedures in Repair Pheory. in The Devolopmeat of Mathomatical Ihinking ed H,P. Ginstourg. Haw York: Academic Press. pp 197-252.
K. Vantehn (1983b). folicity conditions for human skill acquisition: Valivating an AI-based theory, XEROX PARC tach cegoct CIS-21.
R. Young \& T. O'Shea (1981). Errors in Chileren's Suberaction, copodeive Sctance. A. ppi63-177.

Eiguca 1
a) RULES for the ALGEBRA domain (sitighty stylized).
rule mame
FINZ
SOLVE
SIMPLIFY
ADOSUB
MULT
XADOSUB
HTORHS
REARRANGE
XTOLHS
BRA1
BRAZ

CONDITIOM

ACTION
((M M)) or ((M))
(X - W/M) or (INFINLTY.)
($\mathrm{X} \cdot \mathrm{M}^{\circ} / \mathrm{H}^{\circ}$)
(lins [evaluated] rhs)
(lhs [evaluated] rhs)
($1 \mathrm{hs}(M+1-N$) $\quad X$ rhs)
(1hs - rhs $-1+M$)
(liss $+1-N^{*} \mathrm{X}+1-\mathrm{M}$ rhs)
(lhs - $1+\mathrm{M}^{\circ} \times \mathrm{X}$ - rhs)
(lhs N rhs)
(ins $M \circ N \circ X+1-M \circ P$ rhs)

Where $M_{1} N$ and P are integers, 1 hs $\&$ rhs are general paterns (which may be null), tlmeans oither tor may occur, and <and s represent standard algebraic brackets.
 the variables in the pattern. liss, rhs, Mand N, are bound to ($3-x-5+$), null, 3 and 4 respectively.
See Eigure de for a complete trace of this and several other tasks.
0) Some HAL-RULES Lor the Domain

nule mame	COMDETIOIN	ACTIOH
MSOLVE	($M \times X=N$)	(X - M/N) or (INFINITY)
MHTORHS	(lhs +1-M - phs)	
M2]IORHS	(1hst +1. M ihs 2 - rhs)	(Ths t +1- lhs 2 - rhs -1+M)
M3N PORIIS	(lhst +1-M M Ms 2 erhs)	(lhsi +1 - lhs 2 -rhs $+1-\mathrm{M}$)
MXTOLHS	(1hs e ti- M0x ris)	(lins $+1-\mu \times x=$ rhs).
M18RA?	(1hs $M *<\mu \circ x+1-P>$ Phs)	(lins $M^{\circ} N^{\circ} \times x+1-P$ ris)
M2BRAZ		(liss M*N*X +1-M+1-p rhs;

Using the same conventions as above.
c) Rairs of corroct and "bugoy" modols axecuting typical tasks.

1) shows the correct model (MULT ADOSUB SOLVE FIN2) and the "buggy" model
(ADDSUB AULT SOLVE FINZ) solving 3 - $X=5+3$ 4.
[The first line gives the initial state and all subsequent ines give the rule which fires and the resulting state.]

	$3: x=5+3 \bullet 4$
ADDSUB	$3: x=8 \bullet 4$
MULT	$3: x=32$
SOLVE	$x: 32 / 3$
FIN2	(323)

if) shows the correct model (NTORHS ADOSU日 SOLVE FIn2)
and the "buggy" model
(MNTOAHS ADDSUS SULVE fin2) solving \& $x+6=19$.

	- \quad - $6-19$		4-x+6-19
NTORHS	4-x-10-0	MNTORHS	$4 \cdot x \cdot 19+6$
adosus	$4 \cdot x=13$	ADDSUB	$4 \cdot x=23$
SOLVE	$x=13 / 4$	SCluE	$x=25 / 4$
F8H2	(134)	FIN2	(264)

Elquce 2 Izaical hasks for gach hask-sel and ribich cule(s) arg poing cocussed on Task-set Rulas focussed On Typical Task


```
6 - \(x=7\)
\(3 \cdot x=5+3\)
5-x=2•2
\(2 \cdot x+3 \cdot x=10\)
2 - \(x+4\) - 18
4+2•X=16
4•x-2•x+3
\(2 \cdot:-6 \cdot<^{3}+22\)
6 - \(x=4\) - <2 \(x+3>\)
\(2 \cdot x=2+4 \cdot 6\)
\(2+3 \cdot x+4 \cdot x=16\)
\(15 \cdot x=2+4 \cdot<2 \cdot x+3>\)
2 - \(4 \cdot x+2\) - \(x\) - 12
\(14 \cdot x-2 \cdot 3 \cdot<2 \cdot x+3>\)
```


Elouce 3

Protocols from which now mal rules were inforred. (Hote the teacher speciffod the way in which the x-coefficiont should be represented, UDIE tea that some of the orotecols ace
 sfulane's behavious du the majociby of the hasks).

Etguce 18. Protocol apparently showing $M \cdot x$ - $M * X$ (student AB17).

Eiques 3. Protocol apparently showing $M+N \cdot X \operatorname{m} \cdot N+X$ (stujent abs).

Task-sat 8
Task is (4-X $2 \cdot x+6$) Student's solution was ($1 \cdot x=6$)
Task is ($3 \cdot x=2 \cdot x+5$) Student's solution was $(1 \times x-6)$
Task is ($3 \cdot x=-2 \cdot x+7$) Student's solution was $(1 \times x=4)$
Task is (4: $x=2 \cdot x+3$) Student's solution was $(1 \times x=0 / 12)$
Task is ($4=x=-2 \cdot x+8$) Student's solution was $(1 \cdot x=6)$
rask is ($6 \cdot x=2 \cdot x+3$) Student's solution was (ic $x=11 / / 2$)
Elgure id. Protocol apparently showing $M X=N X+P \rightarrow X+X=M+N+P$ (student AB1).

Task is (4 + 2 - \times - 16)	Student's solution was (1-x $=2$)
Task is (2 + - ${ }^{\text {a }}$ - 14)	Student's solution was (1*x:4/12)
Task it $(3+5 \cdot x=11)$	Student's solution was ($2 \cdot x \cdot 6 / 13$)
Task is $(4+6 \cdot x=11)$	Student's solution was ($1 \cdot x-6 / 14$)
Task is $(4+5 \cdot x=6)$ S	Student's solution was ($1: x=-5 / 14$)
Task is ($6+2 \times X=8) \mathrm{S}$	Student's solution was ($1 \times x=8 / / 2)$

Eiqurs 3a. Somewhat erratic protocol: 3 responses conform to $M+N \cdot X=P>M \cdot X=H$ (student $A B 7$).

Eigura 1. Sumary of major aew mal-cules sacountored in cecent exporimants. Sots 1 to 0 give "parsing" mat-rutes and $7-0$ addibional manipulaqiva mal-rules, and f in mal-rule δ represents ofomon factor*.
12. $M \bullet X+M \cdot X$

$$
\begin{aligned}
& \text { a } \quad X \bullet M \\
& \Rightarrow M \bullet X+M \\
& \Rightarrow M+X+N+X
\end{aligned}
$$

1b. $N \cdot x$
$\Rightarrow M+X$
2. $M+N$ -

$$
\Rightarrow M^{\circ}+N^{M}+X+X=
$$

3. $M \leqslant X+N$ -

$$
\begin{aligned}
& \quad M+X+H= \\
\Rightarrow & M \cdot X \cdot N= \\
\Rightarrow & (M+N) \cdot X=
\end{aligned}
$$

4. $M \cdot X=N \bullet P \quad$ - $X=M$
5. $M \bullet X \cdot N \cdot X+P \Rightarrow X+X \in M+M+P$
6. $M \bullet X \in N+P$

$$
\Rightarrow M \cdot x^{M}=X \cdot N
$$

7. M - $X=H$

- $\boldsymbol{X} \cdot \mathrm{N}$

8. $M \cdot X \in N$
$\Rightarrow \quad X=(N / F) / M$
$\Rightarrow X \cdot W /(M / F)$
g. $M \cdot<N \cdot X+P>\quad \rightarrow M \bullet X+M \cdot P$

- Note thesa rules could hava

Figures la\&ib: could have been specified in exactly the same format as that used in notation rules ib and current form hys boen usad for brevity. However, in that eariter notation rules 16 and 9 above would become: CONDITION ACTION
(lins M:Xrhs) (lins $M+x$ rhs)
(lins $M<N \in X+P>$ rhs) (lis $M \cdot X+M \cdot p$ rhs)
where ins \& ris are general patierns.

Eiguce 5.
Protgcol for a student who has a number of "Alternative Methods".
Student ABs on task-set 0 .
a) The lask given was: $2 \cdot x+3 \cdot 9$

Student writes d) $2 x=0=3$
2) $x=3$

Interviewer writes $x=9-3+2$
Intarviewer: Could you say whether your step 1) above or what l've just writen is
correct.
Student says he really could not.
b) The task given was: $2 * x+1=20$

Student writes

1) $2 x=16=4$
2) $2 x=12$
3) $x=0$
interviewer writes $\quad x=16-4-2$
Interviewer: Could you say whether your step 1) above or what five just written is corract.

Student says his 1) probably is.
Interviawef: Can you say why?
Student: I'm afraid not.
Interviawer: Now look back at the last example. there i suggested a sifghty different method there. Would that be possible heref

Student: That's right, it would.
Interviewer: which of these do you thitak is correct?
Student: Really not sure. I often have lot of methods to choose between. which makes it pretity confusing. I sometimes have as many as 5 or 6.
[And so this conversation continues. After this point the student voluntarity offers 2 or 3 solutions to each task. as in the next task.]
c) The task given was $1 \times 2 \cdot x+0$

Student writes \quad 1) $x=2 \cdots 1+0$
Then suggests the foilowing reworking:

> 8) $4 x=2 x-6$
> 2) $4 x=8 x$
> Then Quits.

Interviewar: which solution do you think is righti
Student: Oh. l'm not really sure.
Interviewer: if you were betitig man, which would you put your money on?
Student: Probabiy the first.

Ejumes 0
Three examples of very consistently used MAL-RULES.

1) Student ABIt on task-snt 7 .
2) The lesk given was: $4+2 \cdot x \cdot 10$

Student writes

1) $0 x-18$
2) $x=2.6086$
b) The lask given was: $2+4 \cdot x=14$

Student writes $\quad \begin{aligned} & \text { 1) } 6 * x=14 \\ & \\ & \\ & \text { 2) } x=2.333\end{aligned}$
c) The task giyon was: $3: 6 \cdot x=18$

Student writes 1) $8 \cdot x=11$
(and is lold she can laave it in that form)
d) The task given was: $B-3 \cdot x=18$
Student writes

1) $2 \cdot x=11$
(and is sold she can leave it in that form)
2) Stucent AB17 on task-set 6
a) The bask given was: $2 \cdot x+4 \cdot x=12$

Student writes 1) $x \cdot x=12-2$ - 1
2) $x \cdots 2=0$
3) $x=$ ROOT 6
b) The task given was: $2 \cdots x+3 \in x=10$

Student writes \quad i) $x \cdot x=30-2-3$
2) $x \cdots 2=6$
(and is sold he can leave it in that form)
c) The bask given was: $2 \cdot x=3 \cdot x=10$

Student writes 1) $x \cdot x=10-2+3$ 2) $x \cdots 2=18$
(and is told he can leave it in that form)
111) Student AR18 on task-sots 8, 6, 7 and 8.
a) The task givan was: $2 \cdot x+3 \cdot x=10$

Siudent writes
8) $2 \cdot x=10-2-3$
2) $2 \cdot x=6$
3) $x=2.6$
b) Tho task given was: $3 \times x+6 \cdot x=24$

Student writes 1) $x+x=24-3-5$
2) $2 \bullet x=86$
3) $x=8$
c) The task given was: $3 \cdots x+4 \cdots x+5 \cdots x=24$

Student writes \quad 1) $x+x+x=24-3-4-5$
2) $3=x=12$
3) $x=4$
d) The task given was: $2 \cdot x+4 \cdot 20$
$\begin{array}{ll}\text { Student writes } & \text { i) } x=20-2-4 \\ & \text { 2) } x=14\end{array}$
0) The lask given was: $3 \cdot x+5 \cdot 7$
f) The task given was: $4+30^{2)} x^{-1}$

Student writes 1) $x=24-3=4$
g) The lask given was: $6+6 \cdot{ }^{2} \times 20^{7}$

Student writes 1) $x=20-6=6$
h) The task given was: $a * x=2{ }_{2}^{2} x=9$
$\begin{array}{cl}\text { Student writes } & \text { 1) } 20 x=-4+2+6 \\ & \text { 2) } 2=x=4 \\ \text { 3) } x=2\end{array}$
Student then wrote 1) $x-x=2+0-4$
2) $0-4$
and QUITS.
i) The lask given was: $8 \cdot x \cdot 3 \cdot x+6$

Student writes i) $0=1$
and QUITS.
a) The correct parse tree 80 the equation $6 \times x=3 * x+12$

b) A "two-loval" representation for the uame equation where if. Eollowing lundy 1982, representa aplus bag", that 1a, all the entities with the bas are operated on by the addition operator.

BEST ${ }_{36} \mathrm{COPY}$

[^0]: *

 Reproductions supplied by EDRS are the best that can be made from the original document.

[^1]: - Ihis work was initiated while the author was at tho University of Leeds, U.K.

